Food & Function 2015-06-01

New knowledge on the antiglycoxidative mechanism of chlorogenic acid.

Beatriz Fernandez-Gomez, Monica Ullate, Gianluca Picariello, Pasquale Ferranti, Maria Dolores Mesa, Maria Dolores del Castillo

Index: Food Funct. 6 , 2081-90, (2015)

Full Text: HTML

Abstract

The role of chlorogenic acid (CGA) in the formation of advanced glycation end-products (AGEs) (glycoxidation reaction) was studied. Model systems composed of bovine serum albumin (BSA) (1 mg mL(-1)) and methylglyoxal (5 mM) under mimicked physiological conditions (pH 7.4, 37 °C) were used to evaluate the antiglycoxidative effect of CGA (10 mM). The stability of CGA under reaction conditions was assayed by HPLC and MALDI-TOF MS. The glycoxidation reaction was estimated by analysis of free amino groups by the OPA assay, spectral analysis of fluorescent AGEs and total AGEs by ELISA, and colour formation by absorbance at 420 nm. Structural changes in protein were evaluated by analysis of phenol bound to the protein backbone using the Folin reaction, UV-Vis spectral analysis and MALDI-TOF-MS, while changes in protein function were measured by determining the antioxidant capacity using the ABTS radical cation decolourisation assay. CGA was isomerised and oxidised under our experimental conditions. Evidence of binding between BSA and multiple CGA and/or its derivative molecules (isomers and oxidation products) was found. CGA inhibited (p < 0.05) the formation of fluorescent and total AGEs at 72 h of reaction by 91.2 and 69.7%, respectively. The binding of phenols to BSA significantly increased (p < 0.001) its antioxidant capacity. Correlations between free amino group content, phenol bound to protein and antioxidant capacity were found. Results indicate that CGA simultaneously inhibits the formation of potentially harmful compounds (AGEs) and promotes the generation of neoantioxidant structures.


Related Compounds

Related Articles:

Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase.

2015-01-01

[Nat. Commun. 6 , 5961, (2015)]

Antimicrobial activity of natural products from the flora of Northern Ontario, Canada.

2015-06-01

[Pharm. Biol. 53(6) , 800-6, (2015)]

Comparison of Mannose, Ethylene Glycol, and Methoxy-Terminated Diluents on Specificity and Selectivity of Electrochemical Peptide-Based Sensors.

2015-07-07

[Anal. Chem. 87 , 6966-73, (2015)]

Design and Evaluation of Tumor-Specific Dendrimer Epigenetic Therapeutics.

2015-06-01

[ChemistryOpen 4 , 335-41, (2015)]

Proteomics profiling of ethylene-induced tomato flower pedicel abscission.

2015-05-21

[J. Proteomics 121 , 67-87, (2015)]

More Articles...