Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond.
Chung-Yeh Wu, Takahiro Horibe, Christian Borch Jacobsen, F Dean Toste
Index: Nature 517(7535) , 449-54, (2015)
Full Text: HTML
Abstract
Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon-carbon bond cleavage at ambient conditions by a Au(i) complex that generates a stable Au(iii) cationic complex. In contrast to the well-established soft and carbophilic Au(i) catalyst, this Au(iii) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(iii)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.
Related Compounds
Related Articles:
2014-01-01
[Protein Pept. Lett. 21(11) , 1163-75, (2014)]
2014-08-01
[Anal. Bioanal. Chem 406(20) , 4851-9, (2014)]
2014-08-15
[J. Bacteriol. 196(16) , 3045-57, (2014)]
Direct silylation of Trypanosoma brucei metabolites in aqueous samples and their GC-MS/MS analysis.
2014-09-15
[J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 967 , 134-8, (2014)]
2016-01-01
[Bioresour. Technol. 200 , 624-30, (2015)]