Journal of Proteome Research 2008-02-01

Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.

Jawon Seo, Jaeho Jeong, Young Mee Kim, Narae Hwang, Eunok Paek, Kong-Joo Lee

Index: J. Proteome Res. 7(2) , 587-602, (2008)

Full Text: HTML

Abstract

Post-translational modifications (PTMs) play key roles in the regulation of biological functions of proteins. Although some progress has been made in identifying several PTMs using existing approaches involving a combination of affinity-based enrichment and mass spectrometric analysis, comprehensive identification of PTMs remains a challenging problem in proteomics because of the dynamic complexities of PTMs in vivo and their low abundance. We describe here a strategy for rapid, efficient, and comprehensive identification of PTMs occurring in biological processes in vivo. It involves a selectively excluded mass screening analysis (SEMSA) of unmodified peptides during liquid chromatography-electrospray ionization-quadrupole-time-of-flight tandem mass spectrometry (LC-ESI-q-TOF MS/MS) through replicated runs of a purified protein on two-dimensional gel. A precursor ion list of unmodified peptides with high mass intensities was obtained during the initial run followed by exclusion of these unmodified peptides in subsequent runs. The exclusion list can grow as long as replicate runs are iteratively performed. This enables the identifications of modified peptides with precursor ions of low intensities by MS/MS sequencing. Application of this approach in combination with the PTM search algorithm MODi to GAPDH protein in vivo modified by oxidative stress provides information on multiple protein modifications (19 types of modification on 42 sites) with >92% peptide coverage and the additional potential for finding novel modifications, such as transformation of Cys to Ser. On the basis of the information of precursor ion m/z, quantitative analysis of PTM was performed for identifying molecular changes in heterogeneous protein populations. Our results show that PTMs in mammalian systems in vivo are more complicated and heterogeneous than previously reported. We believe that this strategy has significant potential because it permits systematic characterization of multiple PTMs in functional proteomics.


Related Compounds

Related Articles:

The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species.

1984-12-11

[Nucleic Acids Res. 12(23) , 9179-89, (1984)]

Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.

2009-01-01

[Sci. Signal. 2 , ra46, (2009)]

The glyceraldehyde 3 phosphate dehydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in mouse.

1984-11-01

[EMBO J. 3(11) , 2627-33, (1984)]

Initial characterization of the human central proteome.

2011-01-01

[BMC Syst. Biol. 5 , 17, (2011)]

The DNA sequence and biology of human chromosome 19.

2004-04-01

[Nature 428(6982) , 529-35, (2004)]

More Articles...