Dalton Transactions (Print Edition) 2015-05-07

Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance.

K Bhattacharya, P Deb

Index: Dalton Trans. 44 , 9221-9, (2015)

Full Text: HTML

Abstract

Research on energy storage devices has created a niche owing to the ever increasing demand for alternative energy production and its efficient utilisation. Here, a novel composite of Fe3O4 nanospheres and carbon quantum dots (C-dots) have been synthesized by a two step chemical route. Hybrids of C-dots with metal oxides can contribute to charge storage capacity through the combined effect of Faradaic pseudocapacitance from the Fe3O4 and the excellent electrical properties of the C-dots, which are a promising new member of the carbon family. The structural and morphological properties of the obtained Fe3O4-C hybrid nanocomposite were extensively studied. Detailed electrochemical studies show that the high performance of the magnetically responsive Fe3O4-C hybrid nanocomposite makes it an efficient supercapacitor electrode material. The remarkable improvement in the electrochemical performance of the Fe3O4-C hybrid nanocomposite is attributed to the Faradaic pseudocapacitance of Fe3O4 coupled with the high electrical conductivity of the C-dot which aided in fast transport and ionic motion during the charge-discharge cycles. Cyclic voltammetry and galvanostatic charge-discharge studies of Fe3O4-C hybrid nanocomposite show that the nanosystem delivers a maximum specific capacitance of ∼208 F g(-1). These results demonstrate that the novel Fe3O4-C hybrid nanocomposite has great potential as a high performance electrode material for supercapacitors.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

2015-04-01

[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.

2014-12-29

[Small 10(24) , 5126-36, (2014)]

Decreased lipogenesis in white adipose tissue contributes to the resistance to high fat diet-induced obesity in phosphatidylethanolamine N-methyltransferase-deficient mice.

2014-10-01

[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]

More Articles...