Water Research 2012-09-01

Biodegradation of triclosan by a wastewater microorganism.

Do Gyun Lee, Fuman Zhao, Yohannes H Rezenom, David H Russell, Kung-Hui Chu

Index: Water Res. 46(13) , 4226-34, (2012)

Full Text: HTML

Abstract

Triclosan, a synthetic antimicrobial agent, has been considered as an emerging environmental contaminant. Here we reported a triclosan-degrading wastewater bacterial isolate, Sphingopyxis strain KCY1, capable of dechlorinating triclosan with a stoichiometric release of chloride. The stain can degrade diphenyl ether but not 2,4,4'-tribromodiphenyl ether and 2,2',4,4'-tetrabromodiphenyl ether, despite all these three compounds are structurally similar to triclosan. While strain KCY1 was unable to grow on triclosan and catechol, it could grow with glucose, sodium succinate, sodium acetate, and phenol. When grown with complex nutrient medium containing a trace amount of triclosan (as low as 5 μg/L), the strain could retain its degradation ability toward triclosan. The maximum-specific triclosan degradation rate (q(m)) and the half-velocity constant (K(m)) are 0.13 mg-triclosan/mg-protein/day and 2.8 mg-triclosan/L, respectively. As triclosan degradation progressed, five metabolites were identified and these metabolites continue to transform into non-chlorinated end products, which was supported by a sharp drop in androgenic potential. The activity of catechol 2,3-dioxygenase in the cell extract was detected. No triclosan degradation was observed in the presence of 3-fluorocatechol, an inhibitor of meta-cleavage enzyme, suggesting that triclosan degradation proceed via meta-cleavage pathway. Based on all the observations, a degradation pathway for triclosan by strain KCY1 was proposed.Copyright © 2012 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

2015-04-01

[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.

2014-12-29

[Small 10(24) , 5126-36, (2014)]

Decreased lipogenesis in white adipose tissue contributes to the resistance to high fat diet-induced obesity in phosphatidylethanolamine N-methyltransferase-deficient mice.

2014-10-01

[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]

More Articles...