Anti-miRs competitively inhibit microRNAs in Argonaute complexes.
Daniel J Hogan, Thomas M Vincent, Sarah Fish, Eric G Marcusson, Balkrishen Bhat, B Nelson Chau, Dimitrios G Zisoulis
Index: PLoS ONE 9(7) , e100951, (2014)
Full Text: HTML
Abstract
MicroRNAs (miRNAs), small RNA molecules that post-transcriptionally regulate mRNA expression, are crucial in diverse developmental and physiological programs and their misregulation can lead to disease. Chemically modified oligonucleotides have been developed to modulate miRNA activity for therapeutic intervention in disease settings, but their mechanism of action has not been fully elucidated. Here we show that the miRNA inhibitors (anti-miRs) physically associate with Argonaute proteins in the context of the cognate target miRNA in vitro and in vivo. The association is mediated by the seed region of the miRNA and is sensitive to the placement of chemical modifications. Furthermore, the targeted miRNAs are stable and continue to be associated with Argonaute. Our results suggest that anti-miRs specifically associate with Argonaute-bound miRNAs, preventing association with target mRNAs, which leads to subsequent stabilization and thus increased expression of the targeted mRNAs.
Related Compounds
Related Articles:
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.
2015-04-01
[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]
H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.
2014-12-01
[J. Endocrinol. 223(3) , 241-53, (2014)]
2014-12-29
[Small 10(24) , 5126-36, (2014)]
2014-10-01
[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]