Muscle & Nerve 2015-03-01

Influence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle.

Daniil V Popov, Evgeny A Lysenko, Anton V Bachinin, Tatiana F Miller, Nadezda S Kurochkina, Irina V Kravchenko, Vladimir A Furalyov, Olga L Vinogradova

Index: Muscle Nerve 51(3) , 434-42, (2015)

Full Text: HTML

Abstract

We investigated the effect of resistance exercise intensity and exercise-induced metabolic stress on the activation of anabolic signaling and expression of myogenic genes in skeletal muscle.Ten strength-trained athletes performed high-intensity [HI, 74% of 1-repetition maximum (RM)], middle-intensity (MI, 54% 1RM), or middle-intensity (54% 1RM) no-relaxation exercise (MIR). Kinase phosphorylation level and myogenic gene expression in muscle samples were evaluated before, 45 min, 5 h, and 20 h after exercise.The lactate concentration in MI was approximately 2-fold lower than in the 2 other sessions, and was highest in MIR. The phosphorylation level of extracellular kinase 1/2Thr202/Tyr204 after exercise was related to metabolic stress. Metabolic stress induced a decrease in myostatin mRNA expression, whereas mechano-growth factor mRNA level depended on exercise intensity.This study demonstrates that both intensity and exercise-induced metabolic stress can be manipulated to affect muscle anabolic signaling.© 2014 Wiley Periodicals, Inc.


Related Compounds

Related Articles:

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

2014-01-01

[PLoS ONE 9(12) , e116152, (2014)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

2015-04-22

[J. Ethnopharmacol. 164 , 265-72, (2015)]

More Articles...