Environmental Monitoring and Assessment 2015-12-01

Analysis of DDT and its metabolites in soil and water samples obtained in the vicinity of a closed-down factory in Bangladesh using various extraction methods.

M N U Al Mahmud, Farzana Khalil, Md Musfiqur Rahman, M I R Mamun, Mohammad Shoeb, A M Abd El-Aty, Jong-Hyouk Park, Ho-Chul Shin, Nilufar Nahar, Jae-Han Shim

Index: Environ. Monit. Assess. 187 , 743, (2015)

Full Text: HTML

Abstract

This study was conducted to monitor the spread of dichlorodiphenyltrichloroethane (DDT) and its metabolites (dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD)) in soil and water to regions surrounding a closed DDT factory in Bangladesh. This fulfillment was accomplished using inter-method and inter-laboratory validation studies. DDTs (DDT and its metabolites) from soil samples were extracted using microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), and solvent extraction (SE). Inter-laboratory calibration was assessed by SE, and all methods were validated by intra- and inter-day accuracy (expressed as recovery %) and precision (expressed as relative standard deviation (RSD)) in the same laboratory, at three fortified concentrations (n = 4). DDTs extracted from water samples by liquid-liquid partitioning and all samples were analyzed by gas chromatography (GC)-electron capture detector (ECD) and confirmed by GC/mass spectrometry (GC/MS). Linearities expressed as determination coefficients (R (2)) were ≥0.995 for matrix-matched calibrations. The recovery rate was in the range of 72-120 and 83-110%, with <15% RSD in soil and water, respectively. The limit of quantification (LOQ) was 0.0165 mg kg(-1) in soil and 0.132 μg L(-1) in water. Greater quantities of DDTs were extracted from soil using the MAE and SE techniques than with the SFE method. Higher amounts of DDTs were discovered in the southern (2.2-936 × 10(2) mg kg(-1)) or southwestern (86.3-2067 × 10(2) mg kg(-1)) direction from the factory than in the eastern direction (1.0-48.6 × 10(2) mg kg(-1)). An exception was the soil sample collected 50 ft (15.24 m) east (2904 × 10(2) mg kg(-1)) of the factory. The spread of DDTs in the water bodies (0.59-3.01 μg L(-1)) was approximately equal in all directions. We concluded that DDTs might have been dumped randomly around the warehouse after the closing of the factory.


Related Compounds

Related Articles:

Evaluation of the immune response and protective efficacy of Schistosoma mansoni Cathepsin B in mice using CpG dinucleotides as adjuvant.

2015-01-03

[Vaccine 33(2) , 346-53, (2014)]

Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

2014-01-01

[BMC Biotechnol. 14 , 962, (2015)]

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol.

2015-06-01

[Bioresour. Technol. 185 , 49-55, (2015)]

Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.

2014-12-01

[Growth Factors 32(6) , 236-46, (2014)]

More Articles...