Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles.
Juan F Callejas, Joshua M McEnaney, Carlos G Read, J Chance Crompton, Adam J Biacchi, Eric J Popczun, Thomas R Gordon, Nathan S Lewis, Raymond E Schaak
Index: ACS Nano 8(11) , 11101-7, (2014)
Full Text: HTML
Abstract
Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.
Related Compounds
Related Articles:
2015-01-03
[Vaccine 33(2) , 346-53, (2014)]
2014-01-01
[BMC Biotechnol. 14 , 962, (2015)]
Process development for scum to biodiesel conversion.
2015-06-01
[Bioresour. Technol. 185 , 185-93, (2015)]
2015-06-01
[Bioresour. Technol. 185 , 49-55, (2015)]
Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.
2014-12-01
[Growth Factors 32(6) , 236-46, (2014)]