Nanoscale Research Letters 2014-01-01

Topographical control of cell-cell interaction in C6 glioma by nanodot arrays.

Chia-Hui Lee, Ya-Wen Cheng, G Steven Huang

Index: Nanoscale Res. Lett. 9(1) , 250, (2014)

Full Text: HTML

Abstract

Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.


Related Compounds

Related Articles:

Evaluation of the immune response and protective efficacy of Schistosoma mansoni Cathepsin B in mice using CpG dinucleotides as adjuvant.

2015-01-03

[Vaccine 33(2) , 346-53, (2014)]

Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

2014-01-01

[BMC Biotechnol. 14 , 962, (2015)]

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol.

2015-06-01

[Bioresour. Technol. 185 , 49-55, (2015)]

Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.

2014-12-01

[Growth Factors 32(6) , 236-46, (2014)]

More Articles...