Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents.
Nubla Mahmood, Zhongshun Yuan, John Schmidt, Chunbao Charles Xu
Index: Bioresour. Technol. 190 , 416-9, (2015)
Full Text: HTML
Abstract
Hydrolytic depolymerization of hydrolysis lignin (HL) in water and water-ethanol co-solvent was investigated at 250°C for 1h with 20% (w/v) HL substrate concentration with or without catalyst (H2SO4 or NaOH). The obtained depolymerized HLs (DHLs) were characterized with GPC-UV, FTIR, GC-MS, (1)H NMR and elemental analyzer. In view of the utilization of depolymerized HL (DHL) for the preparation of rigid polyurethane foams/resins un-catalyzed depolymerization of HL employing water-ethanol mixture appeared to be a viable route with high yield of DHL ∼70.5wt.% (SR yield of ∼9.8wt.%) and with Mw as low as ∼1000g/mole with suitable aliphatic (227.1mgKOH/g) and phenolic (215mgKOH/g) hydroxyl numbers. The overall % carbon recovery under the selected best route was ∼87%. Acid catalyzed depolymerization of HL in water and water-ethanol mixture lead to slightly increased Mw. Alkaline hydrolysis helped in reducing Mw in water and opposite trend was observed in water-ethanol mixture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Related Compounds
Related Articles:
2015-01-03
[Vaccine 33(2) , 346-53, (2014)]
2014-01-01
[BMC Biotechnol. 14 , 962, (2015)]
Process development for scum to biodiesel conversion.
2015-06-01
[Bioresour. Technol. 185 , 185-93, (2015)]
2015-06-01
[Bioresour. Technol. 185 , 49-55, (2015)]
Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.
2014-12-01
[Growth Factors 32(6) , 236-46, (2014)]