Carbohydrate Research 2015-04-10

Structural features of a novel polysaccharide isolated from a New Zealand Maori mushroom Iliodiction cibarium.

Lu Ren, Patrick J B Edwards, Conrad O Perera, Yacine Hemar

Index: Carbohydr. Res. 406 , 19-26, (2015)

Full Text: HTML

Abstract

A purified water-soluble fraction (ICP5) of a polysaccharide, isolated from a local Maori mushroom Iliodiction cibarium in New Zealand, was investigated for its structural properties. Size exclusion chromatography and dynamic light scattering showed that ICP5 had a large MW of 1.6 × 10(5) Da with a hydrodynamic diameter of 83 ± 8 nm. Particle size measurements also displayed the tendency of ICP5 to aggregate when suspended in water. The results of GC-MS, FTIR and NMR analyses allowed some characteristics of the chemical structure of ICP5 to be determined. GC-MS results showed that ICP5 contained only glucose (81.61%), galactose (12.90%) and mannose (5.49%) monomers. The characterized fragment structures of ICP5 were found to be dominantly consisting of uronic acids, which formed a backbone containing 1,4-β-D-GlcpA. A small amount of unsaturated uronic acid also appeared to be present.Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Evaluation of the immune response and protective efficacy of Schistosoma mansoni Cathepsin B in mice using CpG dinucleotides as adjuvant.

2015-01-03

[Vaccine 33(2) , 346-53, (2014)]

Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

2014-01-01

[BMC Biotechnol. 14 , 962, (2015)]

Process development for scum to biodiesel conversion.

2015-06-01

[Bioresour. Technol. 185 , 185-93, (2015)]

Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol.

2015-06-01

[Bioresour. Technol. 185 , 49-55, (2015)]

Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.

2014-12-01

[Growth Factors 32(6) , 236-46, (2014)]

More Articles...