ChemPhysChem 2015-03-16

Change of surface structure upon foam film formation.

Christiaan Ridings, Gunther G Andersson

Index: ChemPhysChem 16(4) , 733-8, (2015)

Full Text: HTML

Abstract

The charge distribution and coverage with surfactant molecules at foam film surfaces plays an important role in determining foam film structure and stability. This work uses the concentration depth profiling technique neutral impact collision ion scattering spectroscopy to experimentally observe the charge distribution in a foam film for the first time. The charge distribution at the surface of a foam film and the surface of the corresponding bulk liquid were measured for a cationic surfactant solution and the surface excess as well as the electric potential were determined. Describing the internal pressure of foam films by using the electrochemical potential is introduced as a new concept. The foam film can be seen to have a more negative surface charge compared to the bulk liquid surface due to re-arranging of the surfactant molecules. It is discussed how the change in surface excess and electric potential change the electrochemical potential and the stability of the foam film. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency.

2014-06-02

[J. Exp. Med. 211(6) , 1079-91, (2014)]

Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans.

2012-07-01

[Int. J. Obes. 38(12) , 1538-44, (2014)]

Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth.

2014-01-01

[PLoS Biol. 12(1) , e1001758, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

More Articles...