Analytical Chemistry 2018-04-17

Fabrication of a Microfluidic Flame Atomic Emission Spectrometer: a Flame-on-a-Chip

Arpad Kiss, Attila Gaspar

Index: 10.1021/acs.analchem.8b00774

Full Text: HTML

Abstract

This work demonstrates for the first time the fabrication of a microfluidic flame atomic emission spectrometer (FAES), which incorporates a microburner and flame (flame-on-a-chip). An essential part of the device is a thermospray system applied for effective sample introduction, which is more easily miniaturizable and integrable than the conventional nebulization methods. The merits and limitations of the microfluidic flame atomic emission device were demonstrated and discussed. Using a commercial cigarette lighter including butane gas, the flame temperature made the analysis of the most easily excitable alkali metals possible. The calibration diagrams for Li, Na, and K showed proper linearity in the range of 5–100 mg/L. The analytical applicability of the microfluidic FAES device was tested by analyzing various real samples.

Latest Articles:

Large-Scale Differentiation and Site Specific Discrimination of Hydroxyproline Isomers by Electron Transfer/Higher-Energy Collision Dissociation (EThcD) Mass Spectrometry

2018-04-20

[10.1021/acs.analchem.8b00413]

Spatial-Resolution Cell Type Proteome Profiling of Cancer Tissue by Fully Integrated Proteomics Technology

2018-04-18

[10.1021/acs.analchem.8b00596]

Determination of Osmium Concentration and Isotope Composition at Ultra-low Level in Polar Ice and Snow

2018-04-18

[10.1021/acs.analchem.8b00150]

MoFi: A Software Tool for Annotating Glycoprotein Mass Spectra by Integrating Hybrid Data from the Intact Protein and Glycopeptide Level

2018-04-18

[10.1021/acs.analchem.8b00019]

Determination of Collision Cross-Sections of Protein Ions in an Orbitrap Mass Analyzer

2018-04-18

[10.1021/acs.analchem.8b00724]

More Articles...