ACS Catalysis 2018-03-30

Iridium Catalysts for Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Scope and Mechanism

Valeriy Cherepakhin, Travis J. Williams

Index: 10.1021/acscatal.8b00105

Full Text: HTML

Abstract

We introduce iridium-based conditions for the conversion of primary alcohols to potassium carboxylates (or carboxylic acids) in the presence of potassium hydroxide and either [Ir(2-PyCH2(C4H5N2))(COD)]OTf (1) or [Ir(2-PyCH2PBu2t)(COD)]OTf (2). The method provides both aliphatic and benzylic carboxylates in high yield and with outstanding functional group tolerance. We illustrate the application of this method to a diverse variety of primary alcohols, including those involving heterocycles and even free amines. Complex 2 reacts with alcohols to form the crystallographically characterized catalytic intermediates [IrH(η1,η3-C8H12)(2-PyCH2PtBu2)] (2a) and [Ir2H3(CO)(2-PyCH2PtBu2){μ-(C5H3N)CH2PtBu2}] (2c). The unexpected similarities in reactivities of 1 and 2 in this reaction, along with synthetic studies on several of our iridium intermediates, enable us to form a general proposal of the mechanisms of catalyst activation that govern the disparate reactivities of 1 and 2, respectively, in glycerol and formic acid dehydrogenation. Moreover, careful analysis of the organic intermediates in the oxidation sequence enable new insights into the role of Tishchenko and Cannizzaro reactions in the overall oxidation.

Latest Articles:

Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Activation Promoted by Nitrogen-Based Ligands

2018-04-19

[10.1021/acscatal.8b00821]

Catalytic Dehydrogenation of (Di)Amine-Boranes with a Geometrically Constrained Phosphine-Borane Lewis Pair

2018-04-18

[10.1021/acscatal.8b00152]

Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene Cyclohydroamination of Primary Amines

2018-04-18

[10.1021/acscatal.8b00631]

Isoprene Regioblock Copolymerization: Switching the Regioselectivity by the in Situ Ancillary Ligand Transmetalation of Active Yttrium Species

2018-04-18

[10.1021/acscatal.8b00600]

Low-Energy Electrocatalytic CO2 Reduction in Water over Mn-Complex Catalyst Electrode Aided by a Nanocarbon Support and K+ Cations

2018-04-18

[10.1021/acscatal.8b01068]

More Articles...