ACS Catalysis 2018-04-02

Anion Resistant Oxygen Reduction Electrocatalyst in Phosphoric Acid Fuel Cell

Kara Strickland, Ryan Pavlicek, Elise Miner, Qingying Jia, Ivo Zoller, Shraboni Ghoshal, Wentao Liang, Sanjeev Mukerjee

Index: 10.1021/acscatal.8b00390

Full Text: HTML

Abstract

Phosphoric acid fuel cells are successfully used as energy conversion technologies in stationary power applications. However, decreased proton conductivity and lower oxygen permeability of phosphoric-acid-imbibed membranes require prohibitive loadings of the traditional noble-metal-based electrocatalyst, such as platinum supported on carbon. Additionally, specific adsorption of phosphate anions on the catalyst results in a surface poisoning that further reduces electrocatalytic activity. Here we report a nonplatinum group metal (non-PGM) electrocatalyst as an alternative cathode electrocatalyst for oxygen reduction in phosphoric acid fuel cells. The non-PGM was prepared in a one-pot synthesis using a metal organic framework and iron salt precursor. Phosphate anion poisoning was monitored electrochemically and spectroscopically in reference to the current state-of-the-art Pt-based catalyst at room temperature. Unlike Pt-based catalysts that are prone to phosphate poisoning, the non-PGM electrocatalyst exhibits immunity to surface poisoning by phosphate anions at room temperature. Imaging with microscopy reveals that the iron particles are isolated from the electrolyte by graphitic layers, which ultimately protect the iron from phosphate anion adsorption. The non-PGM electrocatalyst represents the highest performance to date in a high-temperature phosphoric acid membrane system, which is likely attributed to its immunity to phosphate adsorption at the harsher fuel cell environments.

Latest Articles:

Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Activation Promoted by Nitrogen-Based Ligands

2018-04-19

[10.1021/acscatal.8b00821]

Catalytic Dehydrogenation of (Di)Amine-Boranes with a Geometrically Constrained Phosphine-Borane Lewis Pair

2018-04-18

[10.1021/acscatal.8b00152]

Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene Cyclohydroamination of Primary Amines

2018-04-18

[10.1021/acscatal.8b00631]

Isoprene Regioblock Copolymerization: Switching the Regioselectivity by the in Situ Ancillary Ligand Transmetalation of Active Yttrium Species

2018-04-18

[10.1021/acscatal.8b00600]

Low-Energy Electrocatalytic CO2 Reduction in Water over Mn-Complex Catalyst Electrode Aided by a Nanocarbon Support and K+ Cations

2018-04-18

[10.1021/acscatal.8b01068]

More Articles...