In Situ Incorporation Strategy for Bimetallic FeCo‐Doped Carbon as Highly Efficient Bifunctional Oxygen Electrocatalysts
Hengxin Shui; Tian Jin; Jun Hu; Honglai Liu
Index: 10.1002/celc.201800013
Full Text: HTML
Abstract
Highly efficient bifunctional oxygen reduction reaction/oxygen evolution reaction (ORR/OER) electrocatalysts are of great significance for developing rechargeable metal–air batteries. A facile in situ incorporation strategy was proposed to introduce an iron‐based complex into a cobalt‐based ZIF‐67 framework. The resultant FeCo−N/C exhibited an excellent ORR activity with a high half‐wave potential of 0.84 V and simultaneous outstanding OER activity with a low overpotential of 370 mV at a current density of 10 mA cm−2 in 0.1 M KOH. The overall oxygen electrode activity was calculated to be as low as 0.77 V. This work provides new opportunities for the development of highly efficient bifunctional electrocatalysts.
Latest Articles:
Hierarchical MnO2 Located on Carbon Nanotubes for Enhanced Electrochemical Performance
2018-04-17
[10.1002/celc.201701110]
Artificial Interface Derived from Diphenyl Ether Additive for High‐Voltage LiNi0.5Mn1.5O4 Cathode
2018-04-16
[10.1002/celc.201800011]
2018-04-14
[10.1002/celc.201800148]
2018-04-06
[10.1002/celc.201800213]
2018-04-06
[10.1002/celc.201800110]