Coordination Chemistry Reviews 2018-03-08

Computational studies of the nonlinear optical properties of organometallic complexes

Mahesh S. Kodikara, Robert Stranger, Mark G. Humphrey

Index: 10.1016/j.ccr.2018.02.007

Full Text: HTML

Abstract

Computational methods for calculating the molecular nonlinear optical (NLO) properties of molecules are reviewed, with an emphasis on clarifying the strengths and weaknesses of the various approaches. A brief introduction to the theory of NLO effects is provided, and a summary of the key experimental techniques for the determination of molecular first hyperpolarizabilities is included, with discussion of their advantages and disadvantages. Applications of semi-empirical methods and density functional theory in developing structure–quadratic NLO property relationships for organometallic complexes (and particularly metal alkynyl complexes) are reviewed.

Latest Articles:

Tridentate pyridine–pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry

2018-03-28

[10.1016/j.ccr.2018.01.012]

Recent advances about metal–organic frameworks in the removal of pollutants from wastewater

2018-03-19

[10.1016/j.ccr.2018.03.015]

Recent advances in ultraviolet and deep-ultraviolet second-order nonlinear optical crystals

2018-03-15

[10.1016/j.ccr.2018.02.017]

Molecular and supramolecular chemistry of mono- and di-selenium analogues of metal dithiocarbamates

2018-03-15

[10.1016/j.ccr.2018.03.001]

Luminescent oligonuclear metal complexes and the use in organic light-emitting diodes

2018-03-13

[10.1016/j.ccr.2018.01.017]

More Articles...