Acta Materialia 2018-04-02

Grain boundary complexions and the strength of nanocrystalline metals: Dislocation emission and propagation

Vladyslav Turlo, Timothy J. Rupert

Index: 10.1016/j.actamat.2018.03.055

Full Text: HTML

Abstract

Grain boundary complexions have been observed to affect the mechanical behavior of nanocrystalline metals, improving both strength and ductility. While an explanation for the improved ductility exists, the observed effect on strength remains unexplained. In this work, we use atomistic simulations to explore the influence of ordered and disordered complexions on two deformation mechanisms which are essential for nanocrystalline plasticity, namely dislocation emission and propagation. Both ordered and disordered grain boundary complexions in Cu-Zr are characterized by excess free volume and promote dislocation emission by reducing the critical emission stress. Alternatively, these complexions are characterized by strong dislocation pinning regions that increase the flow stress required for dislocation propagation. Such pinning regions are caused by ledges and solute atoms at the grain-complexion interfaces and may be dependent on the complexion state as well as the atomic size mismatch between the matrix and solute elements. The trends observed in our simulations of dislocation propagation align with the available experimental data, suggesting that dislocation propagation is the rate-limiting mechanism behind plasticity in nanocrystalline Cu-Zr alloys.

Latest Articles:

Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys

2018-04-04

[10.1016/j.actamat.2018.03.065]

High resolution transmission electron microscopy correlated to in-field Mössbauer spectrometry to investigate exchange coupling behavior and surface frustrated moments

2018-04-04

[10.1016/j.actamat.2018.03.066]

Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion

2018-04-04

[10.1016/j.actamat.2018.03.017]

Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: Competing failure modes

2018-04-03

[10.1016/j.actamat.2018.03.035]

Deformation mechanisms of nil temperature ductile polycrystalline B2 intermetallic compound YAg

2018-04-02

[10.1016/j.actamat.2018.03.064]

More Articles...