Carbon 2018-03-29

Synthesis and formation mechanism of iron nanoparticles in graphitized carbon matrix using biochar from biomass model compounds as a support

Sai Teja Neeli, Hema Ramsurn

Index: 10.1016/j.carbon.2018.03.079

Full Text: HTML

Abstract

Biochar, a carbon-rich valuable by-product obtained from the hydrothermal carbonization of biomass model compounds (cellulose, hemicellulose and lignin), was utilized as a support for synthesis of carbon encapsulated iron nanoparticles (CEINP) to promote green chemistry and engineering. Core-shell structures consisting of dark metal cores ranging from 40 to 80 nm and a light matrix with graphitic structure appeared in the CEINP. Rietveld refinement analysis applied to the X-ray diffraction (XRD) patterns of cellulose and hemicellulose biochar revealed similar phase compositions (graphite, α-Fe, Fe3C, CFe15.1 and CFe21.2). Interestingly, poorly ordered graphite phase was detected in the XRD diffractogram of CEINP from lignin biochar and HRTEM images have also shown the presence of disordered graphitic layers encapsulating the iron nanoparticles. CEINP from cellulose and hemicellulose on the other hand showed distinct graphite (crystalline) phases. Nitrogen physisorption measurements showed that the graphitization induced by iron nanoparticles introduced mesopores into the carbon matrix of CEINP from cellulose and hemicellulose biochar while CEINP from lignin biochar retained microporous structure due to low graphitization. Based on the characterization results, a detailed dissolution-precipitation mechanism is discussed in the context of bulk iron-carbon equilibrium phase diagram to explain the formation of different phases observed in the CEINP.

Latest Articles:

Selective release of less defective graphene structure during sliding of incompletely reduced graphene oxide coating on steel

2018-04-09

[10.1016/j.carbon.2018.04.022]

Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes

2018-04-03

[10.1016/j.carbon.2018.04.004]

Regeneration of PFOS loaded activated carbon by hot water and subsequent aeration enrichment of PFOS from eluent

2018-04-03

[10.1016/j.carbon.2018.04.005]

Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystal with graphene

2018-04-02

[10.1016/j.carbon.2018.03.094]

Computational analysis for the interface mechanics of carbon fibers with radially-grown carbon nanotubes

2018-03-31

[10.1016/j.carbon.2018.03.090]

More Articles...