Advanced Materials Interfaces 2018-03-14

Surface Fluorination of ALD TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells

Valerio Zardetto; Francesco di Giacomo; Herbert Lifka; Marcel A. Verheijen; Christ H. L. Weijtens; Lachlan E. Black; Sjoerd Veenstra; Wilhelmus M. M. Kessels; Ronn Andriessen; Mariadriana Creatore

Index: 10.1002/admi.201701456

Full Text: HTML

Abstract

Perovskite solar cells (PSCs) are emerging among the photovoltaic (PV) technologies due to their high power conversion efficiency (PCE) in combination with potentially low cost manufacturing processing. In this contribution, the fabrication of efficient planar n‐i‐p PSCs by the modification of the electron transport layer (ETL) adopted as n‐type contact is demonstrated. Specifically, a fluorine‐based plasma treatment prior to perovskite deposition leads to surface fluorination of the TiO2 ETL. The presence of fluorine on the TiO2 surface drastically improves the adhesion between the ALD layer and the methylammonium lead iodide perovskite film, and leads to a more favourable energy band alignment, accompanied by a faster electron carrier extraction at the interface. As consequence of surface fluorination, we observe a significant reduction in the current density‐voltage curve hysteresis with respect to the ALD based reference sample, as well as a remarkable improvement in power conversion efficiency from 4% up to a stable 14.8%.

Latest Articles:

Free‐Standing Bialkali Photocathodes Using Atomically Thin Substrates

2018-04-03

[10.1002/admi.201800249]

The Effect of Thickness‐Tunable ZrO2 Shell on Enhancing the Tunneling Magnetoresistance of Fe3O4 Supraparticles

2018-04-03

[10.1002/admi.201800236]

Light‐Responsive Chemistry to Enable Tunable Interface‐Dependent Mechanical Properties in Composites

2018-04-03

[10.1002/admi.201800038]

Interfacial Self‐Assembly of Colloidal Nanoparticles in Dual‐Droplet Inkjet Printing

2018-03-24

[10.1002/admi.201701561]

Thermal Conductivity Reduction at Inorganic–Organic Interfaces: From Regular Superlattices to Irregular Gradient Layer Sequences

2018-03-24

[10.1002/admi.201701692]

More Articles...