Composites Science and Technology 2018-02-27

Facile and simple fabrication of strong, transparent and flexible aramid nanofibers/bacterial cellulose nanocomposite membranes

Yadong Wu, Fang Wang, Yudong Huang

Index: 10.1016/j.compscitech.2018.02.036

Full Text: HTML

Abstract

Mechanical strength, transparency and flexibility are the leading bottlenecks for the application of a membrane. Thus, the development of co-effectively strong, transparent and flexible membranes is significant for various industries. Here, we fabricated the ANFs (aramid nanofibers)/BC (bacterial cellulose) nanocomposite membranes with different ANFs loadings (up to 8.0 wt%) via a facile and simple vacuum-assisted flocculation route. FT-IR, XRD and SEM were applied to characterize the pure BC membrane and ANFs/BC nanocomposite membranes. The resultant membranes maintained excellent transparency and flexibility at relatively low ANFs concentrations (≤4.0 wt%). The mechanical properties of ANFs/BC nanocomposite membranes could be altered by changing the ANFs content, in which the ANFs served as an enforcement agent, and the nanocomposite membrane exhibited the highest tensile strength at ANFs content of 4.0 wt%. Besides the excellent tensile strength, transparency and flexibility, the surface wettability of the ANFs/BC decreased compared to that of pristine BC, indicating a relative stability in humidity. These results showed that the ANFs/BC nanocomposite membrane is strong, transparent and flexible, thus making it an excellent candidate for electronic substrates and optical materials.

Latest Articles:

Microstructure evolution and self-assembling of CNT networks during mechanical stretching and mechanical properties of highly aligned CNT composites

2018-04-04

[10.1016/j.compscitech.2018.04.003]

Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites

2018-04-03

[10.1016/j.compscitech.2018.03.016]

Plasma poly(acrylic acid) compatibilized hydroxyapatite-polylactide biocomposites for their use as body-absorbable osteosynthesis devices

2018-04-03

[10.1016/j.compscitech.2018.04.001]

Study on synergistic toughening of polypropylene with high-density polyethylene and elastomer-olefin block copolymers under ultrasonic application

2018-04-03

[10.1016/j.compscitech.2018.03.044]

Dielectric response of nano aluminium tri-hydrate filled silicone rubber

2018-04-03

[10.1016/j.compscitech.2018.04.002]

More Articles...