Composites Part A: Applied Science and Manufacturing 2018-02-07

An improved delamination fatigue cohesive interface model for complex three-dimensional multi-interface cases

Chongcong Tao, Supratik Mukhopadhyay, Bing Zhang, Luiz F. Kawashita, Jinhao Qiu, Stephen R. Hallett

Index: 10.1016/j.compositesa.2018.02.008

Full Text: HTML

Abstract

This work presents a cohesive interface model for predicting interlaminar failure of composite laminates under tension-tension fatigue loading. The model features improvements on previous formulations and utilizes four-integration-point elements, which offer several new advantages, while maintaining the merits of the previous single-integration-point elements. An element-based crack tip tracking algorithm is incorporated to confine fatigue damage to crack-tip elements only. A new local rate approach is proposed to ensure accurate integration of strain energy release rate from local elements. Furthermore, a dynamic fatigue characteristic length is proposed to offer a more accurate estimation of fatigue characteristic length in complex three-dimensional cases. Fatigue initiation is incorporated by using a strength reduction method, without changing the propagation characteristics. The numerical approach has been verified and validated using multiple cases and was then applied to fatigue damage development in open-hole laminates, where a good agreement between numerical analysis and experimental results was obtained.

Latest Articles:

Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion

2018-04-06

[10.1016/j.compositesa.2018.04.006]

Nonlinear hyperviscoelastic modelling of intra-ply deformation behaviour in finite element forming simulation of continuously fibre-reinforced thermoplastics

2018-04-04

[10.1016/j.compositesa.2018.03.037]

Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications

2018-04-03

[10.1016/j.compositesa.2018.04.001]

Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers

2018-04-03

[10.1016/j.compositesa.2018.03.036]

Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability

2018-04-02

[10.1016/j.compositesa.2018.03.035]

More Articles...