Alcohol exposure disrupts mu opioid receptor-mediated long-term depression at insular cortex inputs to dorsolateral striatum
Braulio Muñoz, Brandon M. Fritz, Fuqin Yin, Brady K. Atwood
Index: 10.1038/s41467-018-03683-1
Full Text: HTML
Abstract
Drugs of abuse, including alcohol, ablate the expression of specific forms of long-term synaptic depression (LTD) at glutamatergic synapses in dorsal striatum (DS), a brain region involved in goal-directed and habitual behaviors. This loss of LTD is associated with altered DS-dependent behavior. Given the role of the µ-opioid receptor (MOR) in behavioral responding for alcohol, we explored the impact of alcohol on various forms of MOR-mediated synaptic depression that we find are differentially expressed at specific DS synapses. Corticostriatal MOR-mediated LTD (mOP-LTD) in the dorsolateral striatum occurs exclusively at inputs from anterior insular cortex and is selectively disrupted by in vivo alcohol exposure. Alcohol has no effect on corticostriatal mOP-LTD in dorsomedial striatum, thalamostriatal MOR-mediated short-term depression, or mOP-LTD of cholinergic interneuron-driven glutamate release. Disrupted mOP-LTD at anterior insular cortex–dorsolateral striatum synapses may therefore be a key mechanism of alcohol-induced neuroadaptations involved in the development of alcohol use disorders.
Latest Articles:
2018-04-09
[10.1038/s41467-018-03178-z]
2018-04-09
[10.1038/s41467-018-03753-4]
Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes
2018-04-09
[10.1038/s41467-018-03466-8]
Stimulus dependent diversity and stereotypy in the output of an olfactory functional unit
2018-04-09
[10.1038/s41467-018-03837-1]
Contraction of basal filopodia controls periodic feather branching via Notch and FGF signaling
2018-04-09
[10.1038/s41467-018-03801-z]