Renewable Energy 2018-04-03

Performance and stability of semitransparent OPVs for building integration: A benchmarking analysis

D. Chemisana, A. Moreno, M. Polo, C. Aranda, A. Riverola, E. Ortega, Chr. Lamnatou, A. Domènech, G. Blanco, A. Cot

Index: 10.1016/j.renene.2018.03.073

Full Text: HTML

Abstract

Semitransparent (ST) organic photovoltaics (OPVs) are demonstrating great potential for building integration applications, especially in windows. For that purpose, ST-OPVs should achieve adequate transparency and performance stability. In this regard, the present research deals with the experimental performance of three different building-integrated ST-OPV technologies (technology A: developed in the frame of the present study; technologies B and C: commercial modules). More specifically, spectral transmittance and electrical measurements have been conducted in order to determine the characteristics of the modules for building integration and electricity generation purposes. Results regarding the transmittance reveal that technology A outperforms technologies B and C. The stability analysis of the modules verifies that module C is the most stable one with almost no decrease (3.6%) in the power conversion efficiency (PCE). Furthermore, the PCE of technology B is slightly higher than in the case of technology C, which experiences a PCE degradation of about 10–15% over the whole time period. Finally, technology A presents a 20% reduction in PCE at around 500 h.

Latest Articles:

In situ, one-step and co-electrodeposition of graphene supported dendritic and spherical nano-palladium-silver bimetallic catalyst on carbon cloth for electrooxidation of methanol in alkaline media

2018-04-10

[10.1016/j.renene.2018.04.040]

Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization

2018-04-04

[10.1016/j.renene.2018.04.004]

Quasi-Steady State Moving Boundary Reduced Order Model of Two-Phase Flow for ORC Refrigerant in Solar-Thermal Heat Exchanger

2018-04-03

[10.1016/j.renene.2018.04.008]

Span80/Tween80 stabilized bio-oil-in-diesel microemulsion: formation and combustion

2018-04-03

[10.1016/j.renene.2018.04.010]

A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude

2018-04-03

[10.1016/j.renene.2018.04.005]

More Articles...