Journal of Power Sources 2018-03-30

High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

Changsheng Ding, Toshiyuki Nohira, Rika Hagiwara

Index: 10.1016/j.jpowsour.2018.03.068

Full Text: HTML

Abstract

The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g−1 at a current rate of 10 mA g−1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

Latest Articles:

A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

2018-04-07

[10.1016/j.jpowsour.2018.04.002]

Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

2018-04-07

[10.1016/j.jpowsour.2018.04.004]

A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes

2018-04-06

[10.1016/j.jpowsour.2018.04.001]

Sliding mode observer for proton exchange membrane fuel cell: automotive application

2018-04-06

[10.1016/j.jpowsour.2018.03.057]

Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode material for Li-ion batteries

2018-04-02

[10.1016/j.jpowsour.2018.03.069]

More Articles...