Solar PRL 2018-03-24

Band‐Engineered PbS Nanoparticles in CH3NH3PbI3 Solar Cells to Extend Activity Toward Near‐Infrared Region

Uttiya Dasgupta; Biswajit Kundu; Amlan J. Pal

Index: 10.1002/solr.201800012

Full Text: HTML

Abstract

Here, a route is reported to extend the activity of perovskite solar cells toward the near‐infrared (NIR) region through incorporation of band‐engineered PbS nanoparticles in the form of a bilayer structure with the perovskite layer. The nanoparticles were doped with a heterovalent element (bismuth) to shift their Fermi energy towards the conduction band‐edge. With a controlled level of doping and thereby an appropriate shift of Fermi energy, a type‐II band‐alignment could be achieved at the perovskite/doped‐PbS interface, so that the charge‐separation becomes possible upon photogeneration in both the materials. In this work, conduction and valence band‐edges of the nanoparticles upon different extent of bismuth‐doping were monitored through differential tunnel conductance spectra, which have a correspondence to density of states of the semiconductors. The perovskite solar cells with the band‐engineered bismuth‐doped PbS‐layer could be seen to offer NIR activities due to presence of the nanoparticle layer. The NIR activities were in addition to normal responses of perovskite solar cells in the UV‐visible region. The overall power conversion efficiency hence augmented from 6.5 to 10.1% in the inverted planar structure.

Latest Articles:

1T′‐Mo1−xWxS2/CdS Heterostructure Enabling Robust Photocatalytic Water Splitting: Unveiling the Interfacial Charge Polarization

2018-03-30

[10.1002/solr.201800032]

Semitransparent CH3NH3PbI3 Films Achieved by Solvent Engineering for Annealing‐ and Electron Transport Layer‐Free Planar Perovskite Solar Cells

2018-03-30

[10.1002/solr.201700222]

10.3% Efficient CuIn(S,Se)2 Solar Cells from DMF Molecular Solution with the Absorber Selenized under High Argon Pressure

2018-03-30

[10.1002/solr.201800044]

Endotaxial Growth of [100]‐Oriented TaON Films on LiTaO3 Single Crystals for Enhanced Photoelectrochemical Water Splitting

2018-03-25

[10.1002/solr.201700243]

A Universal Route to Fabricate n‐i‐p Multi‐Junction Polymer Solar Cells via Solution Processing

2018-03-23

[10.1002/solr.201800018]

More Articles...