Reaction Chemistry & Engineering 2018-03-21

A definitive assessment of the CO oxidation pattern of a nanocomposite MnCeOx catalyst

Francesco Arena, Roberto di Chio, Claudia Espro, Alessandra Palella, Lorenzo Spadaro

Index: 10.1039/C8RE00026C

Full Text: HTML

Abstract

The CO oxidation pattern of a nanocomposite MnCeOx catalyst (M5C1; Mnat/Ceat, 5) in the range of 293–533 K (P, 1 atm) has been probed under a kinetic regime, varying reagent pressure (p0CO, 0.01–0.025 atm; λ0, 1), ratio (λ0, 0.25–4.0) and CO2 co-feeding (0.05–0.10 atm). Activity data indicate fractional orders on pCO (0.6 ± 0.1) and pO2 (0.4 ± 0.1), with an activation energy of 40 ± 3 kJ mol−1, and a negative kinetic effect of CO2 co-feeding due to competitive adsorption processes. Coupled with systematic evidence on the reactivity and mobility of catalyst oxygen and surface intermediates, kinetic data disclose a concerted redox mechanism of Langmuir–Hinshelwood type, which starts by abstraction of O-atoms from surface active MnIV centres (r.d.s.), and is sustained by adsorption of diatomic oxygen species on O-vacancies. The derivative and integral forms of the formal rate equation explain the empirical kinetics, predicting the activity pattern of the MnCeOx catalyst in the range of 293–533 K.

Latest Articles:

Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform

2018-04-11

[10.1039/C8RE00032H]

Impact of Dissolved Carbon Dioxide Concentration on Process Parameters during its Conversion to Acetate through Microbial Electrosynthesis

2018-04-05

[10.1039/C7RE00220C]

Enhanced hydroformylation of 1-octene in n-butane expanded solvents with Co-based complexes

2018-04-04

[10.1039/C8RE00034D]

Criteria for a unique steady state for enzymatic depectinization of bael (Aegle marmelos) juice in a continuous stirred tank reactor

2018-03-29

[10.1039/C7RE00212B]

From vapour to gas: optimising cellulose degradation with gaseous HCl

2018-03-27

[10.1039/C7RE00215G]

More Articles...