Nanoscale Horizons 2018-03-12

Electron transfer and exciplex chemistry of functionalized nanocarbons: effects of electronic coupling and donor dimerization

Tomokazu Umeyama, Hiroshi Imahori

Index: 10.1039/C8NH00024G

Full Text: HTML

Abstract

In the past few decades, research on the construction of donor–bridge–acceptor linked systems capable of efficient photoinduced charge separation has fundamentally contributed to the fields of artificial photosynthesis and solar energy conversion. Specifically, the above systems are often fabricated by using carbon-based nanomaterials such as fullerenes, carbon nanotubes, and graphenes, offering limitless possibilities of tuning their optical and electronic properties. Accordingly, since understanding the structure–photodynamics relationships of π-aromatic donor–bridge–nanocarbon linked systems is crucial for extracting the full potential of nanocarbon materials, this review summarizes recent research on their photophysical properties featuring nanocarbon materials as electron acceptors. In particular, we highlight the electronic coupling effects on the photodynamics of donor–bridge–nanocarbon acceptor linked systems, together with the effects of donor dimerization. On a basis of their time-resolved spectroscopic data, the photodynamics of donor–bridge–nanocarbon acceptor linked systems is shown to be substantially influenced by the formation and decay of an exciplex state, i.e., an excited-state consisting of a π-molecular donor and a nanocarbon acceptor with partial charge-transfer character. Such basic information is essential for realizing future application of carbon-based nanomaterials in optoelectronic and energy conversion devices.

Latest Articles:

None of us is the same as all of us: resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR)

2018-04-04

[10.1039/C8NH00048D]

pH-Triggered Self-assembly and Hydrogelation of Cyclic Peptide Nanotubes Confined in Water Micro-droplets

2018-04-03

[10.1039/C8NH00009C]

‘Painting’ nanostructured metals—playing with liquid metal

2018-04-03

[10.1039/C8NH00045J]

Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells

2018-03-26

[10.1039/C8NH00030A]

Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding

2018-03-22

[10.1039/C8NH00010G]

More Articles...