Separation and Purification Technology 2018-02-26

High oxygen permeable and CO2-Tolerant SrCoxFe0.9-xNb0.1O3-δ (x = 0.1 ∼ 0.8) Perovskite Membranes: Behavior and Mechanism

Zhigang Wang, Nikita Dewangan, Sonali Das, Ming Hui Wai, Sibudjing Kawi

Index: 10.1016/j.seppur.2018.02.046

Full Text: HTML

Abstract

The oxygen permeability and the CO2 tolerance of SrCoxFe0.9-xNb0.1O3-δ (x = 0.1 ∼ 0.8) perovskite membranes were investigated by varying the composition of cobalt and iron in B-site of perovskite oxides. The experimental results show that the oxygen permeability increases while the CO2 tolerance decreases with increasing doping ratio of cobalt. The mechanism behind this trend was investigated by in situ high temperature XRD, FE-SEM, TGA, FTIR and XPS characterization techniques. These results indicated that basicity of SrCoxFe0.9-xNb0.1O3-δ is enhanced with increasing cobalt doping ratio because of a decrease in overall valence of B-site cations which leads to the decrease in electronegativity. Meanwhile, the decrease of valence for B-site cations also forms more oxygen vacancies which lead to the enhancement of oxygen permeability. With this trade-off between permeability and CO2 tolerance, it is necessary to balance oxygen permeability and stability under CO2 atmosphere for different applications. These results provide a guideline for the design of CO2 tolerant perovskite membrane. SCFN181 (SrCo0.1Fe0.8Nb0.1O3-δ) membrane was the most stable in the series of membranes studied. High oxygen permeation flux of 0.6 mL/min/cm2 for 35 hours at 900 oC and 0.26 mL/min/cm2 flux at 800 oC for subsequent 100 hours was achieved through SCFN 181 membrane (1.1 mm-thick) swept by CO2. With high permeability and high CO2-tolerant properties, SCFN181 membrane can meet the requirements for future industrial applications.

Latest Articles:

Electro-concentration for chemical-free nitrogen capture as solid ammonium bicarbonate

2018-04-07

[10.1016/j.seppur.2018.04.023]

Purification of supercritical-fluid carotenoid-rich extracts by hydrophobic interaction chromatography

2018-04-05

[10.1016/j.seppur.2018.04.018]

Synthesis and characterization of bimetallic nanocomposite and its photocatalytic, antifungal and antibacterial activity

2018-04-04

[10.1016/j.seppur.2018.04.015]

Robust thin film composite PDMS/PAN hollow fiber membranes for water vapor removal from humid air and gases

2018-04-04

[10.1016/j.seppur.2018.03.005]

ZIF-8 Nanoparticles with Tunable Size for Enhanced CO2 Capture of Pebax Based MMMs

2018-04-04

[10.1016/j.seppur.2018.04.010]

More Articles...