Nano-Micro Letters 2018-01-15

Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures

Changhai Liu, Fang Wang, Jin Zhang, Ke Wang, Yangyang Qiu, Qian Liang, Zhidong Chen

Index: 10.1007/s40820-018-0192-6

Full Text: HTML

Abstract

Well-ordered TiO2 nanotube arrays (TNTAs) decorated with graphitic carbon nitride (g-C3N4) were fabricated by anodic oxidization and calcination process. First, TNTAs were prepared via the anodic oxidation of Ti foil in glycerol solution containing fluorinion and 20% deionized water. Subsequently, g-C3N4 film was hydrothermally grown on TNTAs via the hydrogen-bonded cyanuric acid melamine supramolecular complex. The results showed that g-C3N4 was successfully decorated on the TNTAs and the g-C3N4/TNTAs served as an efficient and stable photoanode for photoelectrochemical water splitting. The facile deposition method enables the fabrication of efficient and low-cost photoanodes for renewable energy applications.

Latest Articles:

Metal-Organic Framework-Assisted Synthesis of Compact Fe2O3 Nanotubes in Co3O4 Host with Enhanced Lithium Storage Properties

2018-03-11

[10.1007/s40820-018-0197-1]

Formamidinium Lead Bromide Perovskite Microcrystals for Sensitive and Fast Photodetectors

2018-03-05

[10.1007/s40820-018-0196-2]

Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties

2018-02-27

[10.1007/s40820-018-0195-3]

Noninvasive Label-Free Detection of Cortisol and Lactate Using Graphene Embedded Screen-Printed Electrode

2018-01-23

[10.1007/s40820-018-0193-5]

A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk-Shell Structured Nanomaterials

2018-01-17

[10.1007/s40820-018-0194-4]

More Articles...