Copper-Functionalized Metal–Organic Framework as Catalyst for Oxidant-Controlled Partial Oxidation of Cyclohexene
Pannapat Chotmongkolsap, Thanthapatra Bunchuay, Wantana Klysubun, Jonggol Tantirungrotechai
Index: 10.1002/ejic.201701062
Full Text: HTML
Abstract
Microwave irradiation is exploited for the facile, one-step functionalization of Cu(acac)2 to –NH2 pendant groups of MIL-53(Al)-NH2, a metal–organic framework material, under mild reaction conditions and a short reaction time. PXRD, XPS, XAS, and EPR spectroscopy are used to investigate the structure and chemical nature of the copper species on the framework. The copper center exists in the +2 oxidation state with a square-planar geometry and NO3 coordination environment. The copper complex is anchored to the framework by imine bond formation. This copper-functionalized MIL-53(Al)-NH2 or MIL-53[Cu] is employed in the catalytic oxidation of olefins using molecular oxygen (O2) or tert-butyl hydroperoxide (TBHP) as the oxidant. The chemoselectivities of the oxidation products depend on the type of oxidant and substrate. When O2 is used as the oxidant and isobutyraldehyde as the co-oxidant in the oxidation of cyclohexene with MIL-53[Cu], cyclohexene oxide is the major product. However, when TBHP is employed as the oxidant, 2-cyclohexen-1-one is the major product. Furthermore, the catalyst can be reused at least three times without a significant loss in activity. A copper-complex-functionalized MIL-53(Al)-NH2 catalyst is prepared by microwave-assisted one-step postsynthetic modification and is investigated as an effective heterogeneous catalyst for the oxidant-controlled partial oxidation of cyclohexene.
Latest Articles:
2018-04-06
[10.1002/ejic.201800123]
Exploring Synthetic Routes to Heteroleptic UIII, UIV, and ThIV Bulky Bis(silyl)amide Complexes
2018-04-06
[10.1002/ejic.201800036]
[Co(MeTAA)] Metalloradical Catalytic Route to Ketenes via Carbonylation of Carbene Radicals
2018-04-06
[10.1002/ejic.201800101]
Copper(I)–Dioxygen Reactivity in the Isolated Cavity of a Nanoscale Molecular Architecture
2018-04-06
[10.1002/ejic.201800029]
2018-03-25
[10.1002/ejic.201800040]