Chemistry - A European Journal 2017-08-09

Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li9.54Si1.74P1.44S11.7Cl0.3 Solid Electrolyte

Ruochen Xu, Zhang Wu, Shenzhao Zhang, Xiuli Wang, Yan Xia, Xinhui Xia, Xiaohua Huang, Jiangping Tu

Index: 10.1002/chem.201703116

Full Text: HTML

Abstract

Herein an effective way for construction of all-solid-state lithium-sulfur batteries (LSBs) with sulfur/reduced graphene oxide (rGO) and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte is reported. In the composite cathode, the Li9.54Si1.74P1.44S11.7Cl0.3 powder is homogeneously mixed with the S/rGO composite to enhance the ionic conductivity. Coupled with a metallic Li anode and solid electrolyte, the designed S/rGO-Li9.54Si1.74P1.44S11.7Cl0.3 composite cathode exhibits a high specific capacity and good cycling stability. A high initial discharge capacity of 969 mAh g−1 is achieved at a current density of 80 mA g−1 at room temperature and the cell retains a reversible capacity of over 827 mAh g−1 after 60 cycles. The enhanced performance is attributed to the intimate contact between the S/rGO and Li9.54Si1.74P1.44S11.7Cl0.3 electrolyte, and high electrical conductivity of rGO and high ionic conductivity of the solid electrolyte.

Latest Articles:

Subnaphthalocyanines as Electron Acceptors in Polymer Solar Cells: Improving Device Performance by Modifying Peripheral and Axial Substituents

2018-04-10

[10.1002/chem.201800596]

Formal Lossen Rearrangement/[3+2] Annulation Cascade Catalyzed by a Modified Cyclopentadienyl RhIII Complex

2018-04-10

[10.1002/chem.201801125]

A Highly Sensitive Fluorogenic Probe for Imaging Glycoproteins and Mucine Activity in Live Cells in the Near‐Infrared Region

2018-04-10

[10.1002/chem.201800790]

Improvement of Photodynamic Activity of Lipid–Membrane‐Incorporated Fullerene Derivative by Combination with a Photo‐Antenna Molecule

2018-04-06

[10.1002/chem.201800674]

Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium‐ion Battery Anodes with High Areal and Volumetric Capacity

2018-04-06

[10.1002/chem.201801099]

More Articles...