Coupling of lipid membrane elasticity and in-plane dynamics
Kuan-Yu Tsang, Yei-Chen Lai, Yun-Wei Chiang, and Yi-Fan Chen
Index: 10.1103/PhysRevE.96.012410
Full Text: HTML
Abstract
Biomembranes exhibit liquid and solid features concomitantly with their in-plane fluidity and elasticity tightly regulated by cells. Here, we present experimental evidence supporting the existence of the dynamics-elasticity correlations for lipid membranes and propose a mechanism involving molecular packing densities to explain them. This paper thereby unifies, at the molecular level, the aspects of the continuum mechanics long used to model the two membrane features. This ultimately may elucidate the universal physical principles governing the cellular phenomena involving biomembranes.
Latest Articles:
2017-07-19
[10.1103/PhysRevE.96.019901]
Machine-learning approach for local classification of crystalline structures in multiphase systems
2017-07-19
[10.1103/PhysRevE.96.011301]
Modulated phases in a three-dimensional Maier-Saupe model with competing interactions
2017-07-19
[10.1103/PhysRevE.96.012137]
Ballistic front dynamics after joining two semi-infinite quantum Ising chains
2017-07-19
[10.1103/PhysRevE.96.012138]
Production rate of the system-bath mutual information
2017-07-19
[10.1103/PhysRevE.96.012139]