Real-time online photonic random number generation
Pu Li, Jianguo Zhang, Luxiao Sang, Xianglian Liu, Yanqiang Guo, Xiaomin Guo, Anbang Wang, K. Alan Shore, and Yuncai Wang
Index: 10.1364/OL.42.002699
Full Text: HTML
Abstract
We present a real-time scheme for ultrafast random number (RN) extraction from a broadband photonic entropy source. Ultralow jitter mode-locked pulses are used to sample the stochastic intensity fluctuations of the entropy source in the optical domain. A discrete self-delay comparison technology is exploited to quantize the sampled pulses into continuous RN streams directly. This scheme is bias free, eliminates the electronic jitter bottleneck confronted by currently available physical RN generators, and has no need for threshold tuning and post-processing. To demonstrate its feasibility, we perform a proof-of-principle experiment using an optically injected chaotic laser diode. RN streams at up to 7 Gb/s with verified randomness were thereby successfully extracted in real time. With the provision of a photonic entropy source with sufficient bandwidth, the present approach is expected to provide RN generation rates of several tens of gigabits per second.
Latest Articles:
End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam
2017-07-20
[10.1364/OL.42.002910]
Mid-infrared beam splitter for ultrashort pulses
2017-07-20
[10.1364/OL.42.002918]
Piston alignment for a segmented-aperture imaging system by using piston-sweep phasing
2017-07-20
[10.1364/OL.42.002922]
2017-07-20
[10.1364/OL.42.002914]
Anomalous dispersion engineering of co-sputtering Ag-AZO hybrids for antireflection coatings
2017-07-19
[10.1364/OL.42.002894]