Journal of Chromatographic Science 2007-09-01

Gas chromatography-mass spectrometry analysis of regioisomeric ring substituted methoxy methyl phenylacetones.

Tamer Awad, Jack DeRuiter, C Randall Clark

Index: J. Chromatogr. Sci. 45(8) , 458-65, (2007)

Full Text: HTML

Abstract

The methoxy methyl phenylacetones share an isobaric relationship (equivalent mass but different elemental composition) to the controlled precursor substance 3,4-methylenedioxyphenylacetone. The 10 methoxy methyl phenylacetones as well as the methylenedioxyphenylacetones show essentially equivalent mass spectra with major fragment ions at m/z 135 and 43. Those methoxy methyl phenylacetones with the methoxy group substituted ortho to the benzylic cation in the m/z 135 ion show a further fragmentation to lose formaldehyde (CH2O) and yield a significant ion at m/z 105. The loss of formaldehyde from the ortho methoxy benzyl cation was confirmed using commercially available regioisomeric 2-, 3-, and 4-methoxyphenylacetones. The 10 regioisomeric methoxy methyl phenylacetones were prepared from the appropriately substituted benzaldehydes. Complete gas chromatographic resolution of all ten regioisomeric ketones was obtained on a stationary phase containing modified beta-cyclodextrin. Using the cyclodextrin containing phase, the ortho methoxy-substituted ketones (K1-K4) eluted before the meta-methoxy-substituted ketones (K5-K8) and the para-methoxy-substituted ketones (K9-K10) showed the greatest affinity for the stationary liquid phase and eluted last. Complete separation of the 10 ketones was not obtained on Rtx-1 and Rtx-200 columns.

Related Compounds

Structure Name/CAS No. Articles
4-Methoxy-2-methylbenzaldehyde Structure 4-Methoxy-2-methylbenzaldehyde
CAS:52289-54-0