Carole Bedos, Marie-France Rousseau-Djabri, Benjamin Loubet, Brigitte Durand, Dominique Flura, Olivier Briand, Enrique Barriuso
Index: Environ. Sci. Technol. 44(7) , 2522-8, (2010)
Full Text: HTML
Few data sets of pesticide volatilization from plants at the field scale are available. In this work, we report measurements of fenpropidin and chlorothalonil volatilization on a wheat field using the aerodynamic gradient (AG) method and an inverse dispersion modeling approach (using the FIDES model). Other data necessary to run volatilization models are also reported: measured application dose, crop interception, plant foliage residue, upwind concentrations, and meteorological conditions. The comparison of the AG and inverse modeling methods proved the latter to be reliable and hence suitable for estimating volatilization rates with minimized costs. Different diurnal/nocturnal volatilization patterns were observed: fenpropidin volatilization peaked on the application day and then decreased dramatically, while chlorothalonil volatilization remained fairly stable over a week-long period. Cumulated emissions after 31 h reached 3.5 g ha(-1) and 5 g ha(-1), respectively (0.8% and 0.6% of the theoretical application dose). A larger difference in volatilization rates was expected given differences in vapor pressure, and for fenpropidin, volatilization should have continued given that 80% of the initial amount remained on plant foliage for 6 days. We thus ask if vapor pressure alone can accurately estimate volatilization just after application and then question the state of foliar residue. We identified adsorption, formulation, and extraction techniques as relevant explanations.
Structure | Name/CAS No. | Molecular Formula | Articles |
---|---|---|---|
![]() |
Fenpropidin
CAS:67306-00-7 |
C19H31N |
Investigations into the source of two fungicides measured in...
2009-01-01 [Commun. Agric. Appl. Biol. Sci. 74(1) , 37-46, (2009)] |
Inhibition of microbial cholesterol oxidases by dimethylmorp...
1990-01-01 [J. Steroid Biochem. 35(1) , 107-13, (1990)] |
A sterol C-14 reductase encoded by FgERG24B is responsible f...
2011-06-01 [Microbiology 157(Pt 6) , 1665-75, (2011)] |
Molar absorptivities of 2,4-D, cymoxanil, fenpropidin, isopr...
2006-01-01 [Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 63(1) , 103-10, (2006)] |
Pesticide cocktails can interact synergistically on aquatic ...
2010-05-01 [Environ. Sci. Pollut. Res. Int. 17(4) , 957-67, (2010)] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved