Plant Physiology and Biochemistry 2004-01-01

NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora.

Christelle Simon-Colin, Nelly Kervarec, Roger Pichon, Eric Deslandes

Index: Plant Physiol. Biochem. 42(1) , 21-6, (2004)

Full Text: HTML

Abstract

The red alga Grateloupia doryphora Montagne (Howe) (Cryptonemiales, Halymeniaceae) was used as a model to investigate the effects of changes in seawater salinity on the intracellular low-molecular-weight organic compounds. Carbon-partitioning into major organic solutes was followed by 13C nuclear magnetic resonance (NMR) spectroscopy on living algae incubated in NaH13CO3-enriched seawater, and by high resolution 1H and 13C NMR experiments performed on 13C-enriched algal extracts. NMR and high performance liquid chromatography (HPLC) analyses both demonstrated that floridoside level was the most affected by changes in salinity: it rose under the hypersaline treatment and decreased under hyposaline one. Moreover, at low salinity, the high labeling of floridoside (45.3% 13C-enrichment for C1) together with its low concentrations both provided evidence of great increase in the de novo biosynthesis and turnover rate. Our experiments also demonstrated a high incorporation of photosynthetic carbon into amino acids, especially glutamate, under hypoosmotic conditions. On the other hand, isethionic acid and N-methyl-methionine sulfoxide were only partly labeled, which indicates they do not directly derive from carbon photoassimilation. In algae exposed to high salinity, elevated concentrations of floridoside coupled to a low labeling (9.4%) were observed. These results suggest that hyperosmotic conditions stimulated floridoside biosynthesis from endogen storage products rather than from carbon assimilation through photosynthesis.

Related Compounds

Structure Name/CAS No. Articles
Ammonium isethionate Structure Ammonium isethionate
CAS:57267-78-4
Sodium isethionate Structure Sodium isethionate
CAS:1562-00-1