Nature Neuroscience 2010-11-01

Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS.

Daryl A Bosco, Gerardo Morfini, N Murat Karabacak, Yuyu Song, Francois Gros-Louis, Piera Pasinelli, Holly Goolsby, Benjamin A Fontaine, Nathan Lemay, Diane McKenna-Yasek, Matthew P Frosch, Jeffrey N Agar, Jean-Pierre Julien, Scott T Brady, Robert H Brown

Index: Nat. Neurosci. 13(11) , 1396-1403, (2010)

Full Text: HTML

Abstract

Many mutations confer one or more toxic function(s) on copper/zinc superoxide dismutase 1 (SOD1) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we found that oxidized wild-type SOD1 and mutant SOD1 share a conformational epitope that is not present in normal wild-type SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbosacral spinal cord were markedly C4F6 immunoreactive, indicating that an aberrant wild-type SOD1 species was present. Recombinant, oxidized wild-type SOD1 and wild-type SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal transport in a manner similar to that of FALS-linked mutant SOD1. Our findings suggest that wild-type SOD1 can be pathogenic in SALS and identify an SOD1-dependent pathogenic mechanism common to FALS and SALS.

Related Compounds

Structure Name/CAS No. Articles
Cyanogen bromide-activated Agarose Structure Cyanogen bromide-activated Agarose
CAS:68987-32-6