Kristi M Crowe, Alfred A Bushway, Rodney J Bushway, Russell A Hazen
Index: J. Agric. Food Chem. 54(25) , 9608-13, (2006)
Full Text: HTML
Chemical and photochemical oxidation processes were evaluated for their ability to degrade residual phosmet on lowbush blueberries and for their role in the conversion of phosmet to phosmet oxon--a toxic metabolite of phosmet. Chemical processes included 1 ppm of aqueous ozone, 1% hydrogen peroxide, 100 ppm of chlorine, and UV, whereas photochemical processes included hydrogen peroxide/UV, chlorine/UV, and ozone/hydrogen peroxide/UV. Phosmet applied as Imidan 2.5EC under laboratory conditions resulted in a mean residual concentration of 44.4 ppm, which was significantly degraded (p < 0.05) by ozone and chlorine, yielding reductions of 57.7 and 46%, respectively. Interaction between phosmet (Imidan 2.5EC) and any chemical or photochemical treatment did not result in conversion to phosmet oxon. Residual analysis of commercially grown blueberries revealed mean phosmet (Imidan 70W) levels of 10.65 ppm and phosmet oxon levels of 12.49 ppm. Treatment of commercial blueberries resulted in significant reductions in phosmet regardless of treatment type; however, only UV, hydrogen peroxide/UV, and ozone treatments degraded phosmet (Imidan 70W) to less toxic metabolites and reduced phosmet oxon levels. Treatment-induced conversion of phosmet to phosmet oxon was noticeably influenced by variations between phosmet formulations. Acceleration of photochemical degradation by UV was not observed. Selective oxidation by ozone represents a significant postharvest process for degrading residual phosmet on lowbush blueberries.
Structure | Name/CAS No. | Molecular Formula | Articles |
---|---|---|---|
![]() |
Phosmet
CAS:732-11-6 |
C11H12NO4PS2 |
Effects of postharvest preparation on organophosphate insect...
2008-02-13 [J. Agric. Food Chem. 56(3) , 916-21, (2008)] |
Structure and interactions in fluids of prolate colloidal el...
2012-11-14 [J. Chem. Phys. 137(18) , 184505, (2012)] |
Field evaluation of reduced insecticide spray programs for m...
2011-06-01 [Pest Manag. Sci. 67(6) , 626-32, (2011)] |
Photodegradation of phosmet in wool wax models and on sheep ...
2005-06-15 [J. Agric. Food Chem. 53(12) , 4873-9, (2005)] |
Performance of two monoclonal immunoassays in mixtures of cr...
2007-01-01 [Talanta 74(1) , 52-8, (2007)] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved