Applied Microbiology and Biotechnology 2010-05-01

Mineralization of s-triazine herbicides by a newly isolated Nocardioides species strain DN36.

Koji Satsuma

Index: Appl. Microbiol. Biotechnol. 86(5) , 1585-92, (2010)

Full Text: HTML

Abstract

A novel s-triazine-mineralizing bacterium-Nocardioides sp. strain DN36-was isolated from paddy field soil treated with ring-U-(14)C-labeled simetryn ([(14)C]simetryn) in a model paddy ecosystem (microcosm). In a tenfold-diluted R2A medium, strain DN36 liberated (14)CO(2) from not only [(14)C]simetryn but also three ring-U-(14)C-labeled s-triazines: atrazine, simazine, and propazine. We found that DN36 mineralized ring-U-(14)C-cyanuric acid added as an initial substrate, indicating that the bacterium mineralized s-triazine herbicides via a common metabolite, namely, cyanuric acid. Strain DN36 harbored a set of genes encoding previously reported s-triazine-degrading enzymes (TrzN-AtzB-AtzC), and it also transformed ametryn, prometryn, dimethametryn, atraton, simeton, and prometon. The findings suggest that strain DN36 can mineralize a diverse range of s-triazine herbicides. To our knowledge, strain DN36 is the first Nocardioides strain that can individually mineralize s-triazine herbicides via the ring cleavage of cyanuric acid. Further, DN36 could not grow on cyanuric acid, and the degradation seemed to occur cometabolically.

Related Compounds

Structure Name/CAS No. Articles
ametryn Structure ametryn
CAS:834-12-8
Simetryn Structure Simetryn
CAS:1014-70-6