Applied Microbiology and Biotechnology 1999-05-01

Development of a bioconversion process for production of cis-1S,2R-indandiol from indene by recombinant Escherichia coli constructs.

J Reddy, C Lee, M Neeper, R Greasham, J Zhang

Index: Appl. Microbiol. Biotechnol. 51(5) , 614-20, (1999)

Full Text: HTML

Abstract

Recombinant Escherichia coli cells expressing the toluene dioxygenase (TDO) genes from Pseudomonas putida convert indene to cis-1S,2R-indandiol, a potentially important intermediate for the chemical synthesis of the HIV-1 protease inhibitor, Crixivan. A bioconversion process was developed through optimization of medium composition and reaction conditions at the shake-flask and 23-1 fermentor scales. A cis-1,2-indandiol productivity of approx. 1000 mg/l was achieved with construct TDO123, which represents a 50-fold increase over the initial titer. Varying the bioconversion conditions did not change the enantiomeric excess (e.e.) for the 1S,2R enantiomer from about 30%, suggesting that toluene dioxygenase intrinsically converts indene to 1S,2R- and 1R,2S-indandiols at a ratio of 2:1. Further inclusion of the Pseudomonas dehydrogenase gene in construct D160-1 led to the production of chirally pure cis-1S,2R-indandiol (e.e. > 99%) as a result of the selective degradation of the 1R,2S enantiomer, with the overall yield (650 mg/l) proportionally reduced. A single stage process was developed for D160-1 and scaled up to the 23-1 fermentor, achieving a cis-1S,2R-indandiol titer of 1200 mg/l.

Related Compounds

Structure Name/CAS No. Articles
2-AMINO-4,6-DINITROTOLUENE Structure 2-AMINO-4,6-DINITROTOLUENE
CAS:25501-32-0
(R)-(-)-1-INDANOL Structure (R)-(-)-1-INDANOL
CAS:697-64-3
2,3-Dihydro-1H-inden-1-ol Structure 2,3-Dihydro-1H-inden-1-ol
CAS:6351-10-6