Journal of Neuroscience 2015-01-14

Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways.

Guoqi Zhu, Yan Liu, Yubin Wang, Xiaoning Bi, Michel Baudry

Index: J. Neurosci. 35(2) , 621-33, (2015)

Full Text: HTML

Abstract

Deciphering and storing information coded in different firing patterns are important properties of neuronal networks, as they allow organisms to respond and adapt to external and internal events. Here we report that hippocampal CA1 pyramidal neurons respond to brief bursts of high-frequency stimulation (HFS) and θ burst stimulation (TBS) with long-lasting enhanced responses (long-term potentiation [LTP]), albeit by engaging different signaling pathways. TBS induces LTP through calpain-1-mediated suprachiasmatic nucleus circadian oscillatory protein degradation, ERK activation, and actin polymerization, whereas HFS requires adenosine A2 receptors, PKA, and actin polymerization. TBS- but not HFS-induced LTP is impaired in calpain-1 knock-out mice. However, TBS-induced LTP and learning impairment in knock-out mice are restored by activating the HFS pathway. Thus, different patterns of rhythmic activities trigger potentiation by activating different pathways, and cross talks between these can be used to restore LTP and learning when elements of the pathways are impaired. Copyright © 2015 the authors 0270-6474/15/350621-13$15.00/0.

Related Compounds

Structure Name/CAS No. Articles
sodium chloride Structure sodium chloride
CAS:7647-14-5
Forskolin Structure Forskolin
CAS:66575-29-9
SodiuM bicarbonate Structure SodiuM bicarbonate
CAS:144-55-8
SODIUM CHLORIDE-35 CL Structure SODIUM CHLORIDE-35 CL
CAS:20510-55-8
2-(4-(1,1,3,3-Tetramethylbutyl)phenoxy)ethanol Structure 2-(4-(1,1,3,3-Tetramethylbutyl)phenoxy)ethanol
CAS:2315-67-5
Calpain Inhibitor III Structure Calpain Inhibitor III
CAS:88191-84-8
rolipram Structure rolipram
CAS:61413-54-5