Dibenzhydryl oxalate and several of its para-substituted analogs were thermally decomposed in diphenylmethane, diphenyl ether, and in α-chloronaphthalene solution. Evolution of gas (mainly CO2) was approximately first order, both rate and stoichiometry being poorly reproducible. Rates are correlated with σ+-substituent parameters, with ρ=-1.6 at 230.2°. The 13C/12C and 18O/16O isotope effects involved in CO2 formation were ...