Xiaojuan Zhu, Xifeng Shi, Abdullah M. Asiri, Yonglan Luo, Xuping Sun
Index: 10.1039/C8QI00119G
Full Text: HTML
Development of efficient and durable catalysts based on earth-abundant elements for oxygen evolution reactions (OER) is important for renewable energy storage and conversion technologies. Herein, we report the development of a Cu nanoparticle-embedded N-doped carbon nanowire array on copper foam (Cu–N–C NA/CF) via carbonization of a Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) nanoarray. As a 3D OER electrode, this Cu–N–C NA/CF shows high catalytic activity, needing an overpotential of 314 mV to drive a geometrical current density of 20 mA cm−2 in 1.0 M KOH. It also shows strong long-term electrochemical durability. This suggested that CuO nanoparticles as active species were in situ electrochemically converted from Cu nanoparticles and stably dispersed in the carbon matrix during electrocatalysis.
Alkaline oxygen evolution electrocatalysis driven by Fe-MOF ...
2018-04-13 [10.1039/C8QI00163D] |
Homochiral metal-organic frameworks for industrially relevan...
2018-04-11 [10.1039/C8QI00063H] |
Na6Zn3MIII2Q9 (MIII = Ga, In; Q = S, Se): four new supertetr...
2018-04-10 [10.1039/C8QI00182K] |
Crystal chemistry and thermoelectric transport of layered AM...
2018-04-09 [10.1039/C7QI00813A] |
Comprehensive Studies on Phosphoric Acid Treatment of Porous...
2018-04-09 [10.1039/C8QI00146D] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved