Gerome Melaet , Vitalie Stavila, Lennie Klebanoff , Gabor A. Somorjai
Index: 10.1039/C7CP07015B
Full Text: HTML
Recent experimental and theoretical investigations show that functional groups and additives can have favorable impact on the hydrogen adsorption characteristics of sorbents; however, no definite evidence has been obtained to date and little is known on the effects of such modifications on the thermodynamics of hydrogen uptake and overall capacity. In this work, we investigate the effect of two types of additives on the cryoadsorption of hydrogen to mesoporous silica. First, Lewis and Brønsted acid sites were evaluated by grafting aluminum to the surface of mesoporous silica (MCF-17) and characterizing the resulting silicate materials surface area and the concentration of Brønsted and Lewis acid sites created. Heat of adsorption measurements found little influence of surface acidity on the enthalpy of hydrogen cryoadsorption. Secondly, platinum nanoparticles of diameter 1.5 nm and 7.1 nm were loaded into MCF-17, and characterized by TEM. Hydrogen absorption measurements revealed that the addition of small amounts of metallic platinum nanoparticles increases by up to two-fold the amount of hydrogen adsorbed at liquid nitrogen temperature. Moreover, we found a direct correlation between the size of platinum particles and the amount of hydrogen stored, in favor of smaller particles.
|
Effects of Graphene/BN Encapsulation, Surface Functionalizat...
2018-04-14 [10.1039/C8CP01146J] |
|
Nanoscale thermal diffusion during the laser interference ab...
2018-04-13 [10.1039/C7CP08458G] |
|
Asymmetric Twins in Boron Very Rich Boron Carbide
2018-04-13 [10.1039/C8CP01429A] |
|
Observation of short range order driven large refrigerant ca...
2018-04-13 [10.1039/C8CP01280F] |
|
Computational Screening of Single Transition Metal Atom Supp...
2018-04-13 [10.1039/C8CP01215F] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved