Mei Wang, Xiaoteng Li, Yuan Li, Xi Zuo, Dongmei Li, Bin Cui, De-Sheng Liu
Index: 10.1016/j.orgel.2018.04.006
Full Text: HTML
Using density functional theory in combination with non-equilibrium Green's functions, we investigate the spin transport in two heterostructures of graphene and hexagonal boron-nitride (h-BN) nanoribbons with C-B and C-N interfaces, respectively. Significant spin-filtering effect (over 80%) is observed in both C-B and C-N devices with bias ranging from 0 V to 0.3 V. Interestingly, the spin polarizations are opposite in these two devices, and prominent negative differential resistance (NDR) for both spin-up and spin-down currents is observed only in the C-N device. These findings provide insight into how the spin-transport properties of graphene/h-BN nanoribbons can be impacted by different types of interfaces of the heterostructures.
Improved color purity and efficiency of blue quantum dot lig...
2018-04-09 [10.1016/j.orgel.2018.04.014] |
Exploring charge transfer processes and crystallization dyna...
2018-04-05 [10.1016/j.orgel.2018.03.037] |
A method towards 100% internal quantum efficiency for all-in...
2018-04-04 [10.1016/j.orgel.2018.04.007] |
Efficient and stable hole-conductor-free mesoscopic perovski...
2018-04-04 [10.1016/j.orgel.2018.04.008] |
Regulating the polymer crystallize behavior via the synergis...
2018-04-03 [10.1016/j.orgel.2018.04.002] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved