Xiuyan Cheng, Tomohiro Yokozeki, Haopeng Wang, Lixin Wu, Qingfu Sun
Index: 10.1016/j.compscitech.2018.03.042
Full Text: HTML
The key barrier to design conductive polymer composites with maintained mechanical performance is to increase the content of conductive nanofillers with well-dispersity in the polymer matrix. Here we report new buckypaper (BP) reinforced polydivinylbenzene (PDVB)/doped polyaniline (DPANI) composites with significant improvement in both electrical and mechanical properties. The composites have been fabricated through a positive-pressure filtration method which features high loading of well-dispersed oxidized MWCNTs. The electrical conductivity and the elastic modulus of the BP reinforced composites were found to be 11.56 and 6.88-times improved, respectively, compared to the native PDVB(DPANI). The enhancement mechanism is explained by the formation of electrical transport pathways and an extensive molecular-level interaction between BP and DPANI. The enhancement effect has also been confirmed by comparing the experiment result with theoretical calculations following the Tandon-Weng model. The fabrication strategy and the analysis method presented herein can be used for the design of new functional polymer composites with both high electrical conductivity and high modulus.
|
Microstructure evolution and self-assembling of CNT networks...
2018-04-04 [10.1016/j.compscitech.2018.04.003] |
|
Synergetic enhancement of thermal conductivity by constructi...
2018-04-03 [10.1016/j.compscitech.2018.03.016] |
|
Plasma poly(acrylic acid) compatibilized hydroxyapatite-poly...
2018-04-03 [10.1016/j.compscitech.2018.04.001] |
|
Study on synergistic toughening of polypropylene with high-d...
2018-04-03 [10.1016/j.compscitech.2018.03.044] |
|
Dielectric response of nano aluminium tri-hydrate filled sil...
2018-04-03 [10.1016/j.compscitech.2018.04.002] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved