L. Di Gaspare, A.M. Scaparro, M. Fanfoni, L. Fazi, A. Sgarlata, A. Notargiacomo, V. Miseikis, C. Coletti, M. De Seta
Index: 10.1016/j.carbon.2018.03.092
Full Text: HTML
In this work we shed light on the early stage of the chemical vapor deposition of graphene on Ge(001) surfaces. By a combined use of μ-Raman and x-ray photoelectron spectroscopies, and scanning tunneling microscopy and spectroscopy, we were able to individuate a carbon precursor phase to graphene nucleation which coexists with small graphene domains. This precursor phase is made of C aggregates with different size, shape and local ordering which are not fully sp2 hybridized. In some atomic size regions these aggregates show a linear arrangement of atoms as well as the first signature of the hexagonal structure of graphene. The carbon precursor phase evolves in graphene domains through an ordering process, associated to a re-arrangement of the Ge surface morphology. This surface structuring represents the embryo stage of the hills-and-valleys faceting featured by the Ge(001) surface for longer deposition times, when the graphene domains coalesce to form a single layer graphene film.
Selective release of less defective graphene structure durin...
2018-04-09 [10.1016/j.carbon.2018.04.022] |
Utilizing SO2 as self-installing gate to regulate the separa...
2018-04-03 [10.1016/j.carbon.2018.04.004] |
Regeneration of PFOS loaded activated carbon by hot water an...
2018-04-03 [10.1016/j.carbon.2018.04.005] |
Enhancement and modulation of photonic spin Hall effect by d...
2018-04-02 [10.1016/j.carbon.2018.03.094] |
Computational analysis for the interface mechanics of carbon...
2018-03-31 [10.1016/j.carbon.2018.03.090] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved