Xin Jiang; Xiangfei Qin; Chen Ling; Zhiyong Wang; Jiangang Lu
Index: 10.1002/aic.16168
Full Text: HTML
The influence of feeding point in conventional stirred tank reactor and flow characteristics in micro‐reactor on the microstructure of Cu‐ZnO catalyst was studied. Cu‐Zn distribution in co‐precipitate was characterized by EDS and Zn fraction in zincian malachite was estimated from the 20 peak shift in XRD pattern. The theory analysis and experimental results, combining with measurement of segregation index, show that the contact pattern and mixing of reactants in precipitation process determine the uniformity of Cu‐Zn distribution in initial co‐precipitates at the micro‐scale. The uniform Cu‐Zn distribution is favorable for the formation of zincian malachite with higher Zn fraction, whereas the uneven distribution could lead to either zincian malachite with lower Zn fraction or aurichalcite‐like nonmalachite. These differences in the precursor structure act on subsequent calcination and reduction, as well as their products. Along this path, mixing affects the evolution of the catalyst microstructure by means of Cu‐Zn distribution. © 2018 American Institute of Chemical Engineers AIChE J, 2018
Effect of fuel composition on NOx formation in high‐pressure...
2018-04-11 [10.1002/aic.16170] |
Morphology evolution and dynamics of droplet coalescence on ...
2018-04-10 [10.1002/aic.16169] |
Near‐UV activated, photostable nanophosphors for in vitro do...
2018-04-10 [10.1002/aic.16166] |
Design of active NiCo2O4‐δ spinel catalyst for abatement of ...
2018-04-06 [10.1002/aic.16162] |
Investigation mechanism of DEA as an activator on aqueous ME...
2018-03-30 [10.1002/aic.16165] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved